# Stopping the Dance in the Tevatron

C.Y. Tan 19 May 2011

#### Overview

- The goal is to see whether experiments can confirm theory.
- It is well known that the Tevatron beam exhibits longitudinal oscillations which do not damp out.
- Can use the phase shifter module used for longitudinal dampers and chromaticity tracking to shake the beam.

### Dancing Bunches (Uncoalesced)



- Uncoalesced beam
- •100 turns between traces
- Synchrotron freq ~87 Hz
- Dance continues indefinitely.
- Inductive impedance model explains the dance

### Dancing Bunches (Coalesced)



For coalesced bunch, the tip of the bunch dances.

Frames are about 1s apart.

#### The Experiment

- Inject 2 bunches of coalesced beam
  - Shake beam using phase modulation
  - Use SBD to capture the longitudinal profile of the bunch.
  - Monitor beam loss, centroid motion etc.

#### Shaking at 150 GeV





Shake is for ~14 s Amplitude is 3 deg peak, modulation frequency = 87.47 Hz. Divot structure forms which was predicted in theory.

#### **Results from Simulations**



### Shaking at 150 GeV (cont'd)



- •The beam sigma grows during the shake. (Note shape change!)
- Beam current drops.(Beam fills the bucket)
- Beam centroid still shows some motion although we don't see it by eye. Instrumentation?

#### **Contrast to Dampers**





- Dampers damp out the dance.
- •The longitudinal distribution takes up more of a triangular shape rather than a more rotund shape from shaking.
- There is no beam loss using the dampers.



#### Initial Bunch Shape Effects



2 bunches shaken at the same time.

Bunch 2 stops dancing after 7-8 s of shaking.
Bunch 1 does not stop dancing.

#### Shaking at 980 GeV



Use a slow ramp to adiabatically start and stop the shake because from observations sudden turn ons cause beam to fall out of bucket – surprising since bucket is 2x larger than beam.

Synchrotron frequency is 34 Hz.

### Shaking at 980GeV



- •Beam is shaken 5 times using the ramp.
- There is NO bunched beam loss.
- •There is a jump in beam sigma after first shake.
- •The beam centroid clearly becomes quieter after shakes.

### Shaking at 980GeV



Dancing stops after the 4<sup>th</sup> shake.

Shape is definitely rounder than before shake.

# Comparing Before and After Shake



No beam is lost.
There is a redistribution of particles in the bunch.
The distribution looks more rounded.

# Side Effect of Proton Damping on Pbars (150 GeV)





Side effect of longitudinal damping of protons.

Pbars are shaken which stops the dancing tips. Divot forms.





#### Conclusion

- Shaking does indeed stop the bunches from dancing.
- Distribution becomes more rotund than at the start.
- Initial beam distribution may determine the duration of the shake for stopping the dance.
- Sometimes a divot does form which has been predicted by computer simulations.
- This may be a method for stabilizing the beam without using any active damper system.